

113

Jurnal Teknik Industri, Vol. 20, No. 2, December 2018: 113-126 DOI: 10.9744/jti.20.2.113-126

ISSN 1411-2485 print / ISSN 2087-7439 online

Scheduling Flexible Manufacturing System with Stacker Crane
Using Coloured Petri Nets

Ari Setiawan1*, Teguh Ersada Natail Sitepu1

Abstract: Flexible Manufacturing System (FMS) is a system that can increase production speed
and accuracy significantly. FMS can process the various product at the same workstation.
However, FMS needs an efficient allocation of resources as inputs (e.g. job schedule and material
handling allocation). This paper presented a modelling of FMS production scheduling problem.
The model consisted of fifteen workpieces, four machines, and a stacker crane. Coloured Petri
Nets (CPN) was the programming language which used to simulate the model. The model had
three modules; they were the machine, loading/unloading, and delivery module. Each module
had a set of submodules. Machining process, pick-up request, and picking mechanism
submodules were in the machine module, while job selection, job picking, and machine selection
submodules were in the loading/unloading module. Additionally, delivery to pallet stacker, and
proceed to stage two submodules were in the delivery module. The simulation executed 436 steps
with 1.467 second computational time. The makespan was 1.647 minutes, and all machines had

high utilization level, higher than 80%. However, the stacker crane utilization level was low.

Keywords: Scheduling, Flexible Manufacturing System, Coloured Petri Nets, stacker crane,
simulation.

Introduction

The customer has very diverse demands in Industry
4.0 era and manufacturer is expected to have high

production flexibility to satisfy those demands.
Flexible Manufacturing System (FMS) is a manu-
facturing system with high production flexibility
(Shivanand et al. [1]; Majija et al. [2]; Bohn and

Jaikumar [3]). FMS can produce various products at
the same workstation. FMS also can adjust pro-
duction volume based on demand. FMS needs ade-

quate allocated resources as inputs to achieve these
abilities. Those resources consist of CNC machine,
fixture, tool magazines, tool, automated material
handling, and buffer. Based on Setiawan et al. [4], all

those resources need maintenance schedule, to mini-

mize any interruption in the production processes.

FMS also needs production scheduling to make

production goes well (Sule [5]; Zhan et al. [6];
Sahraeian [7]). There are various methods in pro-
duction scheduling, categorized by the exact method
and approximation method. Different production

scheduling methods can produce different makespan
(the time difference between the start and finish of a
sequence of jobs or tasks) and flow time (the time
taken for completion of a flow of material) Setiawan

et al. [8]. Setiawan et al. [9] have developed a mathe-
matical model for FMS production scheduling consi-

dering cutting tools.

1 Faculty of Industrial Technology, Department of Industrial

Engineering, Institut Teknologi Harapan Bangsa, Jl. Dipati Ukur

80-84, Lebakgede, Coblong, Bandung, Jawa Barat, Indonesia 40132

Email: teguh_sitepu@ithb.ac.id

* Corresponding author

Since the model is hard to solve using an exact

method, many researchers have been applied

various approximation method to this model.

Pakpahan et al. [10] have developed an algorithm to

solve the Setiawan et al. [9] model based on the ant

colony optimization method. However, this algo-

rithm used a static scheduling approach. This

condition leads to the possibility that there will be

unfinished jobs because the cutting tools are

unavailable. Sitepu et al. [11] suggested calculating

the cutting tools before a manufacturer decided to

start any production processes. Setiawan et al. [12]

developed dynamic scheduling to anticipate broken

cutting tools during unscrewed operation. Further-

more, Setiawan et al. [13] developed a job resche-

duling model for FMS which minimize makespan

and minimize starting time difference between

initial and new schedule. The model expected to give

better scheduling and performance.

FMS production scheduling and performance were

simulated using Pharo 3.0 programming language

by Setiawan et al. [14] while the subject considers

various cutting tools. Pharo needs pre-defined

classes as input to create an FMS model. These

inputs make the FMS model difficult to configure.

Therefore, Petri Nets (PNs) is used as mathematical

modelling language in the modelling, analysing,

simulating, and controlling the manufacturing sys-

tem. PNs is also useful to model systems whose

behaviour can be described as interferences between

asynchronous and concurrent processes (Gradisar

and Music [15]; Pan [16]; Yasuda [17]). Gradisar and

Music [15] modelled a multiproduct batch plant

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 114

using PNs. Pan [16] developed a computationally

more efficient optimal deadlock control policy of FMS

using PNs. The experimental results indicated that

it is the most efficient policy among all known ones

that can design optimal controllers. Yasuda [17]

extended PNs for hierarchical and distributed

control of large and complex robotic manufacturing

system.

However, there is a backward compatible extension

of PN called Coloured Petri Nets (CPN). CPN is a

discrete-event modelling language that combines the

capabilities of PNs with the capabilities of a

functional programming language (Jensen et al. [18];

Igei et al. [19]). The main difference between PNs

and CPN is that the CPN is used as a simulation tool

without the necessity of a new extension definition

(Rocha de Carvalho and Porto [20]). Jensen et al. [18]

simulated a multi-product production system to

verify the use of CPN. The system consists of twenty

types of products with their operational sequences.

The simulation result shows that the takt-time value

converges stably from 7 to 8 seconds per product

unit. Long et al. [21] simulated a production system

in Industry 4.0 using several non-PNs methods (e.g.

MM and UML) and various high-level modelling

methods (e.g. CPN). The result shows that CPN still

have huge gaps in flexibility and adaptability of a

production system.

Therefore, in this paper FMS production scheduling

is simulated using CPN. The proposes system con-

siders the stacker crane which was not considered in

the Setiawan et al. [14]. The objective of this paper is

to measure the system performance, which includes

the machine and stacker crane utilization level.

Methods

Problem Description

An Indonesian aircraft industry had been using

FMS since 1992 (Setiawan et al. [14]). The construc-

tion of FMS in this company consisted of four

Figure 1. FMS construction

Figure 2. The CPN hierarchy for a machine module

MATERIAL

PALLET STOCKER

WORK
PIECE

WORK
PIECE

MACHINE

M4

WORK
PIECE

WORK
PIECE

MACHINE

M3

WORK
PIECE

WORK
PIECE

MACHINE

M2

WORK
PIECE

WORK
PIECE

MACHINE

M1

STACKER CRANE

Load/Unload Stations

MATERIAL MATERIAL

Pallet Stocker

M1 M2 M3 M4

Level-1

L UL

Stacker Crane
Stacker Crane

Machine 1

MACHINING
PROCESS

At M1

PICK UP
REQUEST

At M1

PICKING
MECHANISM

At M1

Level-2

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp.113-126

 115

identical machines (M1, M2, M3, and M4), a pallet

stocker, a stacker crane, and a loading/unloading

station as shown in Figure 1. The workpieces in this

case study were independent jobs which were

processed in one or two stages. The production

system would begin when there was a workpiece

waiting in a loading/unloading station, which had

unlimited capacity. The Automated Storage and

Retrieval System (AS/RS) would check the machine

availability. If there were no machine available, then

the AS/RS would order a stacker crane to wait in the

loading/unloading station until a machine was

available. However, if there were more than one

machines available, the system would choose a

machine randomly.

After a machine had been chosen, the system would

check the list of the workpieces waited in the

loading/ unloading station. If there were more than

one workpieces at the loading/unloading station,

then it would be sorted based on the Shortest

Processing Time (SPT) method. The workpiece with

the shortest processing time would become the top

priority. A stacker crane, which only could pick up

one workpiece at a time, would be ordered to pick up

the priority workpiece from the loading/unloading

station and to drop it off to the chosen machine. The

stacker crane movement assumed to be one minute.

Each machine could contain two workpieces, one in

the process slot and the other in the buffer slot. If a

workpiece in the process slot has been processed,

Figure 3. The CPN hierarchy for the loading/ unloading module

Figure 4. The CPN hierarchy for the delivery module

Pallet Stocker

M1 M2 M3 M4

Level-1

L UL

Stacker Crane
Stacker Crane

Loading/Unloading

JOB SELECTION
CRANE PICKING

JOB

Level-2

MACHINE
SELECTION

Pallet Stocker

M1 M2 M3 M4

Level-1

L UL

Stacker Crane
Stacker Crane

DELIVERY TO
PALLET

STOCKER

PROCEED TO
STAGE TWO

Level-2

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 116

then the Automatic Pallet Changer (APC) would

automatically rotate it with a workpiece in the buffer

slot. The APC rotation time was negligible. Each

machine had a cutting tool to process the workpiece.

This paper assumed the cutting tools had an

unlimited lifetime.

The top priority of a stacker crane movement was

the finished workpiece. The stacker crane would pick

the finished workpiece which had two stages process

to a loading/unloading station for a setup process.

The setup process time was also negligible.

Otherwise, it delivered a finished workpiece with one

stage process to a pallet stocker, as the final storage

place. This process was repeated until no workpiece

waited in the loading/unloading station.

Hierarchy Module Design

CPN did not only focused on modelling a specific

class, but also broad classes of systems; i.e.

concurrent systems. The CPN constructed the model

into a set of modules. The module's concepts based

on the hierarchical structuring mechanism, allowing

a module to have a set of submodules (Jensen et al.

[18]). In this paper, we proposed three modules:

machine, loading/ unloading, and delivery.

The Hierarchy of a Machine Module

A machine module described the state and the

events for the procedure in all machines. There were

three submodules in the machine module: machine-

ing process, pick-up request, and picking mecha-

nism. The machining process submodule was used to

model the procedure of a workpiece operation which

is delivered to a machine. The pick-up request sub-

module was work as a sensor which sent a pick-up

request of a finished workpiece from a machine. The

picking mechanism submodule was used to model

the respond of a stacker crane to pick-up a request

from a machine. Figure 2 shows an example of the

CPN hierarchy for Machine 1 (M1).

The Hierarchy of Loading/Unloading Module

The Loading/unloading module described the state

and the events for the procedure in a loading/ un-

loading station. There were three submodules in the

loading/unloading module: job selection, picking job,

and machine selection. The job selection submodule

was used to model the procedure of a workpiece

selection in a loading/unloading station. The picking

job submodule was used to model the procedure of a

workpiece pick-up process in a loading/unloading

station. The machine selection submodule was used

to model the procedure of a machine selection which

will receive a workpiece. Figure 3 shows the CPN

hierarchy for the loading/unloading module.

The Hierarchy of Delivery Module

The delivery module described the state and the

events for a delivery procedure. There were two sub-

modules in the delivery module: delivery to pallet

stocker and proceeded to stage two. The delivery to

pallet stocker submodule was used to model the

procedure of a workpiece delivery from a machine to

a pallet stocker. The proceed to stage two sub-

module, only applied for a workpiece with stage two.

This submodule was used to model the procedure of

a workpiece delivery from a machine to a loading/

unloading station. Figure 4 shows the CPN hierar-

chy for the delivery module.

CPN Submodule Design

The Machining Process Submodule

The machining process submodule had twelve places

and three transitions for each machine. The places in

the machining process submodule were Buffer_1,

Inbound_M1, M1_Buffer, M1_Ready_To_Proc, SP1,

Available_Mach, Processed_M1, Processed _ Job _ at

_M1, M1_Waiting_For_Pickup, C1, M1_Not_Ready,

and M1_Signaling. Buffer_1 was an output from the

picking job submodule. Buffer_1 stored a token to

identify a workpiece in the buffer slot of a machine.

Inbound_M1 was used to record the arrival time of a

workpiece in a machine. M1_Buffer stored a token

(b) which represents the availability of a machine to

process a workpiece. M1_Ready_To_Proc notified

whether a workpiece was ready to be processed. SP1

was a place to store a job stage of operation data.

Available_Mach was an output place to store a

token. It was used as input for a machine selection

submodule. Processed_M1 was an output place to

record a workpiece finished processing in a machine.

Processed_Job_at_M1 showed a workpiece that

finished processing. M1_Waiting_For_Pickup was a

place for a workpiece that has been rotated to buffer

and to wait to be picked up by a stacker crane. C1

was a place to record the total time at a machine.

One token r1 was in the place M1_Not_Ready shows

M1 did not have any finished workpiece to be picked

up by a stacker crane. M1_Signaling tells the stacker

crane that there was a finished workpiece waiting to

be picked up at a machine. Figure 5 shows the ma-

chining process submodule.

The transitions in the machining process submodule

were M1_Setup_Job, M1_Processing_Job, and A.

M1_Setup_Job transition was enabled when there

were one token in Buffer_1 and one token in

M1_Buffer. M1_Setup_Job would consume those

tokens and produce three tokens: at Inbound_M1, at

SP1, and M1_Ready_To_Proc. M1_Processing_Job

transition was enabled where there were one token

in SP1 and one token in M1_Ready_To_Proc. M1_

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp.113-126

 117

Processing_Job would consume those tokens and

produce four tokens: at Available_Mach, at Process-

ed_M1, at C1, and Processed_Job_at_M1. A tran-

sition was enabled when there was one token in

Processed _ Job _at_M1 and 1one token in M1_Not_

Ready. A transition would consume those tokens and

produce two tokens: at M1_Waiting_For_Picking

and M1_ Signalling.

The Pick-up Request Submodule

The pick-up request submodule had eight places and
eight transitions. Places in the pick-up request
submodule were M1_Signalling, Req_Idle, Waiting_
to_be_Processed, Waiting_for_Req_Fulfillment, and
Sending_Pickup_Req_to_C. M1_Signalling was input
from the machining process submodule. One token
(r1) in the M1_Signalling place informed there was

Figure 5. The machining process submodule

Figure 6. Pick-up request submodule

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 118

one finished processed workpiece in M1 and needed
to be picked up by a stacker crane. Req_Idle was
input from the picking job submodule. Four tokens
(req) were in the Req_Idle place. In each machine,
only one finished workpiece can be picked up.
Waiting_to_ be_ Processed was a place to store all
request tokens for every machine. Waiting_for_Req_
Fulfillment identifies which machine had sent a pick-
up request and waited for a stacker crane. Sending_
Pickup_ Req_ To _C was used to call a stacker crane
for a pick-up process. Figure 6 shows the pick-up
request submodule.

The transitions in the pick-up request submodule

were M1_Req and M1_Sending_Req. M1_Req tran-

sition was enabled when there were one token in M1

and minimum one token (req) in the Req_Idle. This

transition would produce one token in the Wait-

ing_to_be_Processed place. M1_Sending_Req transi-

tion was enabled when there was one token in the

Waiting_to_be_Processed place. This transition

would produce one token in the Waiting_ for_ Req_

Fulfilled place.

Figure 7. The receive pick-up request

Figure 8. Picking mechanism submodule

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp.113-126

 119

The receive pick-up request process was a part of the

pick-up request submodule. The Receive pick-up

request was only executed when there was mini-

mum one machine sends a pick-up request. Receive

pick-up had four places and one transition. Places in

the receive pick-up request were Crane_Idle, Sen-

ding_ Pickup_Req_To_C, Go_To_Picking_Job, and

Req_ Idle. Crane_Idle was a place to store one idle

token (c) of the crane. One token (c) in Crane_Idle

place informed the crane is idle and ready to do a

pick-up or a delivery process. Sending_Pickup_Req_

To_C was an output from the pick-up request

submodule. One token (req) in Sending_Pickup_

Req_To_C informed there was a pick-up request in

the system. Go_To_ Picking_Job was an output. It

stored command and sent it to the stacker crane.

Req_Idle was a place to store all idle pick-up

requests because the stacker crane is busy. Three

tokens (req) in Req_Idle informed there were three

idle pick-up requests. Figure 7 showed the receive

pick-up request process.

The transition in the receive pick-up request was

only Receive_Pickup_Req. This transition was

enabled when there were one token (c) in Crane_Idle

place and one token (req) in Sending_Pickup_Req_

To_C. Receive_Pickup_Req would consume those

tokens and produce two tokens: at Go_To_Picking_

Job and Req_Idle. P_HIGH ensured this process

would be the top priority.

Figure 9. Job selection submodule

Figure 10. Picking job submodule

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 120

Picking Mechanism Submodule

The picking mechanism submodule had twenty-one

places, and ten transitions. Places in the picking

mechanism submodule were M1_Not_Ready, M1_

Waiting_For_Pickup, M1_Idle, Unloaded_State, Pallet_

Stocker, Waiting_For_The_Next_Stage, Counter_S

1_Job_To_S2,Job_Loaded_On_Crane, Pickup_ Arrived,

Mach_Cap, Go_To_Picking_Job, and Waiting_For_

Req_Fulfillment. M1_Not_Ready was a place to store

token (r1). It described M1 was not ready to send a

pick-up request. M1_ Waiting_ For_Pickup described

a workpiece was waiting in a buffer slot of M1.

M1_Idle described the slot availability in M1. Two

tokens (m) in the M1_Idle place indicated that there

were two available slots in M1. Unloaded_State

states that a stacker crane was empty. Pallet_Stoc-

ker was a place to store a finished workpiece. Wait-

ing_For_The_Next_Stage was used to store a work-

piece which had a stage-two operation. Coun-

ter_S1_Job_To_S2 was used to record which job had

finish stage-two operation. Job_Loaded_On_ Crane

described a workpiece had been loaded on a crane.

Pickup_Arrived stated a stacker crane had arrived in

a machine. Mach_Cap was a place to store the

capacity of an available slot for all machines. Eight

tokens (cap) showed all machine slots were empty.

Go_To_Picking_Job stated that the crane was going

to a machine. Waiting_For_Req_Fulfillment was a

place to store which machine is targeted by a stacker

crane. Figure 8 shows the picking mechanism

submodule.

The transitions in picking mechanism submodule

were at_M1, M1_Loading_Onto_C, Delivery_To_

Pallet_Stocker, and Proceed_To_Stage_2. The at_M1

transition was enabled when there was one token

Figure 11. Picking job submodule (enabled)

Figure 12. Machine selection submodule

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp.113-126

 121

(r1) in Waiting_For_Req_Fulfillment. This transition

would produce one token in the Pickup_Arrived. The

m1_loading_onto_c transition was enabled when

there were one token in Pickup_Arrived and one

token in M1_Waiting_For_Pickup. This transition

would produce a token in the Job_Loaded_on_Crane

and reduce a token in the M1_Idle. Delivery_To_

Pallet_Stocker transition was enabled when there

was one token in Job_Loaded_on_Crane has already

had been processed. This transition would produce a

token in the Pallet_Stocker place. The proceed_to_

stage_2 transition was enabled when there was one

token in Job_Loaded_on_Crane that had a stage-two

operation. This transition would produce one token

in Waiting_For_The_Next_Stage and one token in

Counter_S1_Job_To_S2.

Job Selection Submodule

The job selection submodule had four places and one

transition. Places in the job selection submodule

were List_of_Operations, Selected_Mach, Selected_

Mach_ 2, and Selected_Job. List_of_Operations was

a place to store the list of workpieces which would be

sent to a machine. The list was described in the

Stage_1_ OTO. A token (“Job01_1”,190, OTO) in

Stage_1_OTO informed a workpiece number one

with operation time 190 minutes and only had one

stage. Another example, a token (“Job02_1”,255, S1)

informed a workpiece number two with operation

time 255 minutes and had two stages. Selec-

ted_Mach was output from the machine selection

submodule. One token (d1,1) informed machine one

Figure 13. Delivery to pallet stocker submodule (enabled)

Figure 14. Proceed to stage two submodule (enabled)

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 122

was selected. Selected_Mach_2 was a place to store

data of the selected machine and ready to be used to

select a workpiece. Selected_Job was a place to store

data of the selected workpiece which was delivered

to a machine. Figure 9 shows job selection sub-

module.

The transition in the job selection submodule was

Selecting_Job. This transition was enabled when

there was one token (identifier) in Selected_Mach

and one token Stage_1_OTO in List_of_Operations.

If there were more than one token in the

Stage_1_OTO list, the token would be chosen by the

Shortest Processing Time (SPT) method. In Figure 6,

workpieces with the shortest operation time (170

minutes) were workpiece 5 and workpiece 11. There-

fore, those workpieces would be selected randomly.

Selecting_ Job would consume those tokens and

produce a token (identifier) in Selected_Mach_2.

This token represents which machine would receive

a workpiece with the shortest operation time.

Picking Job Submodule

The Picking job had seventeen places and seven

transitions. However, there were only five places and

one transition for picking job submodule in the

loading/unloading station. Places in the picking job

submodule were Crane_Idle, Mach_Cap, Selected_

Job, Selected_Mach_2, and Crane_Loaded. Crane_

Idle was a place to store one idle token (c) of the

crane. Mach_Cap described as the total capacity of

all machines. Eight tokens (cap) in Mach_Cap show

that the slots in all machines were empty. Selec-

ted_Job was a place to store a workpiece which

would be delivered by a stacker crane. Selec-

ted_Mach_2 described as a place to store the tar-

geted machine. Crane_Loaded shown a workpiece

which had already been loaded in a stacker crane.

Figure 10 shows the picking job submodule.

The transition in the picking job submodule was

Picking_Job. This transition was enabled when there

was an idle token (c) in Crane_Idle, a workpiece

token in Selected_Job, a machine target token in

Selected_ Mach_2, and a token (cap) in Mach_Cap.

The Picking_Job transition would consume all of

those tokens and produce a token in the

Crane_Loaded. In Fig. 11, Crane is loaded with a

workpiece number 11 and deliver it to Machine 1.

Machine Selection Submodule

The machine selection submodule had five places

and three transitions. Places in the machine selec-

tion submodule were Available_Mach, Notification_

for_ MS, List_of_AM, Available_SM_Act, and Selec-

ted_ Mach. Available_Mach was a place to store a

token (identifier) that used as input to machine

selection submodule. Notification_for_MS was a

notification to execute machine selection submodule

because the stacker crane has delivered a workpiece

and ready to deliver the next workpiece. Avai-

lable_Mach and Notification_for_MS were input for

the machine selection submodule. They could be

found in the other submodules. List_of_AM was a

list of the available machines. Token identifier value

(d1,1) in the List_of_AM showed the Machine 1 was

available, (d2,2) showed Machine 2 was available,

and so on. Available_SM_Act described the alter-

native of machine selection action that could be done.

A token (dum) in the Available_SM_Act restricted

only one machine can be selected at a time. Selec-

ted_Mach was a chosen machine to process a

workpiece. Selected_Mach was an output of the

machine selection submodule. It could be used as

input for the other submodules. Figure 12 showed

the machine selection submodule.

The transitions in machine selection submodule

were Selecting_Mach, Enlisting_AM, and Noti-

fying_MS_ Procedure. The selecting_mach transition

was enabled when there were a token (identifier) in

List_of_AM and a token (dum) in Available_SM_Act.

Selecting_Mach would consume those tokens and

generate an output in two places. First, the Selec-

ting_ Mach transition would reduce token (identifier)

list in the List_of_AM according to the selected

machine. Second, the Selecting_Mach transition

would produce a token (identifier) in the Selec-

ted_Mach, which represented the selected machine.

If there were more than one token (identifier) in the

List_of_AM, the system would choose a machine

randomly. Enlisting_AM transition was enabled

when there was an input token (identifier), for

example (d1,1), in Available_Mach place. Enlist-

ing_AM would insert this token to a list in

List_of_AM, for example ([(d2,2),(d3,3),(d4,4)]). When

Enlisting_AM was enabled, the result is ([(d2,2),

(d3,3),(d4,4),(d1,1)]). Notifying_MS_Procedure was

enabled when there was a token (dum) in Noti-

fication_for_MS. Notifying_MS_Procedure would

consume this token and produce a token (dum) in

Available_SM_Act.

Delivery to Pallet Stocker Submodule

The Delivery to pallet stocker submodule had seven

places and four transitions. Places in the delivery to

pallet stocker submodule were Job_Loaded_On_

Crane, M1_Not_Ready, Unloaded_State, and Pallet_

Stocker. Job_Loaded_On_Crane was input from the

picking mechanism submodule. This place states

that a workpiece had been loaded on a stacker crane.

A token (“Job11_2”, S2) in Job_Loaded_On_Crane

place informed job 11 in a stage-two operation had

been loaded on a stacker crane. M1_Not_Ready was

a place to store token (r1) described M1 was not

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp.113-126

 123

ready to send a pick-up request. Unloaded_State

stated that the stacker crane was empty. A token (c)

informed the crane was not empty. Pallet_Stocker

was a place to store a finished workpiece. A token

(“Job11_2”, S2) in Pallet_Stocker informed the job 11

in the stage-two operation had been delivered to a

pallet stocker.

The transitions in the delivery to pallet stocker

submodule were t1, t2, t3, and t4. T1 was enabled

when there was a token (r1) in Job_Loaded_ On_

Crane. This transition will produce tokens in three

places: at Unloaded_State, M1_Not_Ready, and

Pallet_Stocker. Figure 13 shows the Enabled Deli-

very to pallet stocker submodule.

Proceed to Stage Two Submodule

The Proceed to stage two submodule had eight

places and four transitions. Places in the proceeded

to stage two submodule were Job_Loaded_On_

Crane, Counter_S1_Job_To_S2, M1_Not_Ready,

Waiting_For_The_Next_Stage, and Unloaded_State.

Job_ Loaded_On_Crane was input from the picking

mechanism submodule. Counter_S1_Job_To_S2 was

used to store which workpiece had already been

delivered to a loading/unloading station for a stage-

two operation. M1_Not_Ready was a place to store

token (r1). It described M1 was not ready to send a

pick-up request. Waiting_For_The_Next_Stage was

used to store a workpiece which had a stage-two

operation. Unloaded_State states that a stacker

crane was empty.

The transitions in the proceed to stage two sub-
module were t5, t6, t7, and t8. The t5 transition was
enabled when there was a token (r1) in the Job_
Loaded_On_Crane place. The t5 transition would
produce tokens in four places: at Counter_S1_
Job_to_S2, M1_Not_Ready, Waiting_For_Next_ Stage,
and Unloaded_State. Figure 14 shows the Enabled
Proceed to stage two submodule.

Figure 15. Stage two procedure

Table 1. Job operation data

Work piece Stage CPN Name Operation Time (min) Work piece Stage CPN Name Operation Time (min)

1 1 01_1 190 8 2 08_2 160

2 1 02_1 255 9 1 09_1 305

2 02_2 265 10 1 10_1 240

3 1 03_1 320 2 10_2 265

2 03_2 280 11 1 11_1 170

4 1 04_1 265 2 11_2 245

2 04_2 205 12 1 12_1 320

5 1 05_1 170 2 12_2 200

6 1 06_1 175 13 1 13_1 240

7 1 07_1 270 2 13_2 230

2 07_2 205 14 1 14_1 155

8 1 08_1 250 15 1 15_2 165

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 124

Stage two procedure was a part of the proceed to

stage two submodule. The Stage two procedure was

used to update the data on the finished workpiece

that sends back to a loading/unloading station. The

Stage two procedure had thirteen places and eleven

transitions. Places in stage two procedure were AA,

BB, CC, DD, EE, FF, GG, HH, II, G, Waiting_

For_The_Next_ Stage, Job_Ready_For_2nd_Stage,

and List_of_Jobs. Places AA until II used to store the

stage-two information for every workpiece which had

the stage-two operation. A token (“Job02_2”,265, S2)

in place AA informed a workpiece number 02 had a

stage-two operation time 265 minutes. G was used to

store a workpiece that had been prepared for a stage-

two operation. Waiting_For_The_Next_Stage was a

place to describe a workpiece that had been arrived

in a loading/unloading station and waited for a

stage-two operation. A token (“Job11_1”, S1) showed

a workpiece number 11 was waiting for a stage-two

operation. Job_Ready_For_2nd_Stage was used to

store the data of a workpiece that had been updated

and ready for a stage-two operation. List_of_Jobs

was a place to store a workpiece that will be

delivered to a machine. Figure 15 showed a stage

two procedure.

The transitions in the stage two procedure were

Cell_2.2, Cell_3.2, Cell_4.2, Cell_7.2, Cell_8.2, Cell_

10.2, Cell_11.2, Cell_12.2, Cell_13.2, Preparing_Job,

and Enlisting_Job. Cell_2.2 until Cell_13.2 tran-

sitions were enabled when there were a token in

each corresponding place (AA, BB,…, II) and a token

in the G places. Each transition would produce a

token in the Jobs_Ready_For_2nd_Stage and reduce

a token in its similar places (AA, BB,…, II). The

Preparing_Job transition was enabled when there

was a token in Waiting_For_The_Next_Stage places.

This transition would produce a token in the G place.

The Enlisting_Job transition was enabled when

there was a token in Jobs_Ready_For_ 2nd_Stage

and a token in List_of_Jobs. This transition will

update the token in the List_of_Jobs place.

Table 2. List of machine process

Machine CPN name

M1 11_1 06_1 11_2 07_1 12_1 07_2

M2 14_1 13_1 08_1 13_2 08_2 03_1

M3 05_1 10_1 04_1 10_2 04_2 03_2

M4 15_1 01_1 02_1 09_1 02_2 12_2

Table 3. Simulation verification

Machine 2

CPN name Start time End time

14_1 3 158

13_1 158 398

08_1 398 648

13_2 648 878

08_2 878 1038

03_1 1038 1358

Figure 16. Performance report

Figure 17. Gantt chart

Results and Discussions

Data

The model was tested on the real-world industry

data based on Setiawan et al. [14]. The Complete

data set is given in Table 1. There were 15 work-

pieces. Workpiece number 1, 5, 6, 9, 14, and 15 only

needed one stage operation. Meanwhile, other

workpieces needed a two-stage operation.

Result

Based on the performance report shown in Figure

16, it is known that the simulation needs 436 steps

(enabled transition) for one cycle with makespan

1.647 minutes. The utilization level for all machines

was good; it was around 82-86%. However, the

utilization level for the stacker crane was relatively

low (around 8,74%). The list of machining process in

each machine is shown in Table 2.

Table 3 shows the simulation verification results, for

example in Machine 2. Workpiece number 14 did not

start on 0. It was because the stacker crane needed

three minutes to pick-up a workpiece in a loading/

unloading station, move, and drop off a workpiece

Figure 17. Gantt chart

170

155

170

165

175

240

240

190

245

250

265

255

270

230

265

305

320

160

205

265

205

320

280

200

0 500 1000 1500 2000

M1

M2

M3

M4

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp.113-126

 125

number 14 to the Machine 2. The duration time in

Machine 2 was 1355 minutes. This duration was the

same as the performance report of Machine 2

duration time as shown in Figure 16. Figure 17

shows the Gantt chart of the model simulation.

Conclusions

Setiawan et al. [14] used Pharo 3.0 to simulate an

FMS production scheduling. Pharo 3.0, required a

new class definition with all interactions if the model

is modified (e.g. added stacker crane). This paper

showed an FMS production scheduling simulation

using CPN. CPN developed with a set of sub-

modules. This made the model more under-

standable. The CPN made a group of processes

based on a function, location, machine, material flow,

and more importantly in this paper, a stacker crane.

FMS modelled by focusing on its stacker crane made

the simulation more dynamic. Furthermore, the

problem identification would be much easier.

In this paper, the FMS generated 1.647 minutes

makespan; it was 5,23% greater than the Setiawan

et al. approach [14], i.e., 1.565 minutes. The make-

span’s gap occurred because Setiawan et al. [14] did

not consider the stacker crane. However, the stacker

crane utilization in this paper was relatively low

around 8,74%. This result happened because the du-

ration of every stacker crane movement was assum-

ed to be one minute. The assumption made the

stacker crane time movement was much smaller

compared to the job operation time. Therefore, the

stacker crane utilization was low. For further impro-

vement, the FMS can be simulated by considering

the real stacker crane time movement to show a

realistic stacker crane utilization level.

References

1. Shivanand, H.K., Benal, M. M., and Koti, V.

Flexible Manufacturing System, New Age Inter-

national (P) Limited Publishers, New Delhi,

2006.

2. Majija, N., Mpofu, K., Modungwa, D., Concep-

tual Development of Modular Machine Tools for

Reconfigurable Manufacturing Systems in

Azevedo, A., ed., Advances in Sustainable and

Competitive Manufacturing Systems, Lecture

Notes in Mechanical Engineering, Springer

International Publishing Switzerland, 2013, pp.

467-478.

3. Bohn, R. and Jaikumar, R., From Filing and

Fitting to Flexible Manufacturing, Now Publi-

shers Inc., USA 2005.

4. Setiawan, A., Budiyanto, S., and Martawirya,

Y.Y. Pengembangan Model Penjadwalan Pera-

watan dengan Semi Markov Process untuk

Fasilitas Flexible Manufacturing System. Pro-

ceedings Seminar Nasional Tahunan Teknik

Mesin XV, Bandung, 2016.

5. Sule, D.R., Production Planning and Industrial

Scheduling. USA: CRC Press, 2008.

6. Zhan, Q., Manier, H., and Manier, M., Meta-

heuristics for Job Shop Scheduling with Tran-

sportation in Jarboui, B., Siarry, P., And

Teghem, J., ed., Metaheuristics for Production

Scheduling, Great Britain and USA: ISTE Ltd

and Wiley, 2013, pp. 465-493.

7. Sahraeian, A., Minimizing Makespan in Flow

Shop Scheduling Using a Network Approach in

Righi, R., ed., Production Scheduling. London:

IntechOpen, 2012, pp. 47-64.

8. Setiawan, A., Susan, and Pakpahan, E.K.A.,

Penjadwalan Job Shop pada Empat Mesin

Identik dengan Menggunakan Metode Shortest

Processing Time dan Genetic Algorithm, Jurnal

Telematika ITHB, 9, 2014, pp.19-24.

9. Setiawan, A., Wangsaputra, R., Halim, A.H.,

and Martawirya, Y. Y., A Production Scheduling

Model Considering Cutting Tools for an FMS to

Minimize Makespan, Proceedings of the Asia

Pacific Industrial Engineering & Management

System Conference, Vietnam, 2015.

10. Pakpahan, E.K.A., Kristina, S., and Setiawan,

A., Proposed Algorithm to Improve Job Shop

Production Scheduling Using Ant Colony Opti-

mization Method. IOP Conf. Series: Materials

Science and Engineering 277 01205, 2017.

11. Sitepu, T.E.N., Setiawan, A., and Candra, A.K.,

Penjadwalan Job Shop Dua Stages dan Pe-

nentuan Perkakas Potong pada Flexible Manu-

facturing System Menggunakan Genetic Algo-

rithm, Jurnal Telematika ITHB, 12, 2017, pp.

123-132.

12. Setiawan, A., Wangsaputra, R., Martawirya,

Y.Y., and Halim, A.H., An FMS Dynamic

Production Scheduling Algorithm Considering

Cutting Tool Failure and Cutting Tool Life, IOP

Conf. Series: Materials Science and Engineering

114 012052, 2015.

13. Setiawan, A., Wangsaputra, R., Halim, A.H.,

and Martawirya, Y. Y., A Job Rescheduling

Model Considering Cutting Tool Failure and

Cutting Tool Life for A Flexible Manufacturig

System, Proceedings of the Asia Pacific Indus-

trial Engineering & Management System Con-

ference, Taiwan, 2016.

14. Setiawan, A., Qashmal L., Wangsaputra, R.,

Martawirya, Y. Y., and Halim, A. H., An Object-

oriented Modelling of Production Scheduling for

Flexible Manufacturing System, Journal of

Applied Mechanics and Materials, 842, 2016, pp.

345-354.
15. Gradisar, D. and Music, G., Automated Petri-

Net Modelling for Batch Production Scheduling

Setiawan et al. / Scheduling Flexible Manufacturing System with Stacker Crane / JTI, Vol. 20, No. 2, December 2018, pp. 113-126

 126

in Pawlewski, P., ed., Petri Nets – Manufactur-
ing and Computer Science. Croatia: Intech,
2012, pp. 3-26.

16. Pan, Y. A., A Computationally Improved Opti-

mal Solution for Deadlocked Problems of

Flexible Manufacturing Systems Using Theory

of Regions in Pawlewski, P., ed., Petri Nets –

Manufacturing and Computer Science. Croatia:

Intech, 2012, pp. 51-73.

17. Yasuda, G., Design and Implementation of

Hierarchical and Distributed Control for Robotic

Manufacturing Systems Using Petri Nets in

Pawlewski, P., ed., Petri Nets: Applications.

Croatia: Intech, 2010, pp. 379-392.

18. Jensen, K. and Kristensen, L.M., and Wells, L.,

Coloured Petri Nets and CPN Tools for Model-

ling and Validation of Concurrent Systems,

International Journal of Software Tools Tech-
nology Transferer, 9, 2007, pp.213-254.

19. Igei, P., Cugnasca, C.E., Junqueira, F., Miyagi,
P.E., and Garcia, J.I.,Modelling of Collaborative
Production Systems Using Coloured Petri Nets,
International Conference on Pervasive and
Embedded Computing and Communication
System, 2011.

20. Rocha de Carvalho, H.J. and Porto, A.J.V., A
Colored Petri Net Based Modelling and Simu-
lation of Multi-Product Manufacturing Systems,
19th International Conference on Production
Research, Chile, 2007.

21. Long, F., Zeiler, P., and Bertsche, B., Potentials
of Coloured Petri Nets for Realistic Availability
Modelling of Production Systems in Industry
4.0, 25th European Safety and Reliability Con-
ference, Switzerland, 2015.

